Postingan Terbaru

Latihan Soal dan Jawaban Bab 14 Menampilkan Level dan Pola Lantai pada Gerak Tari - Seni Budaya Kelas 7 SMP/MTS

Latihan Soal dan Jawaban Bab 14 Menampilkan Level dan Pola Lantai pada Gerak Tari - Seni Budaya Kelas 7 SMP/MTS Soal 1: Apa yang dimaksud dengan level? Jawaban: Level adalah ketinggian badan penari saat melakukan gerak. Soal 2: Sebutkan tiga jenis level pada gerak tari! Jawaban: Tiga jenis level pada gerak tari adalah: Level tinggi: penari berdiri tegak dengan kedua kaki rapat atau dibuka selebar bahu. Level sedang: penari berdiri dengan lutut sedikit ditekuk atau badan direndahkan. Level rendah: penari duduk, jongkok, atau bahkan membungkuk. Soal 3: Mengapa level penting dalam gerak tari? Jawaban: Level penting dalam gerak tari karena dapat membuat penampilan tari tampak lebih dinamis dan menarik. Soal 4: Bagaimana cara menampilkan level tinggi dalam gerak tari? Jawaban: Cara menampilkan level tinggi dalam gerak tari adalah dengan berdiri tegak dengan kedua kaki rapat atau dibuka selebar bahu. Soal 5: Bagaimana cara menampilkan level sedang dalam gerak tari? Jawaban: Cara...

Bab 5 Relasi dan Fungsi - Matematika Kelas 10 SMA/MA/SMK

Ringkasan Buku Sekolah
Kelas 10 (SMA / MA / SMK)
MATEMATIKA
Bab 5 Relasi dan Fungsi 


Latihan Soal dan Jawaban


Gambar .Grup band favorit sejumlah siswa

Contoh di atas merupakan hubungan antara kelompok siswa dengan kelompok grup band favoritnya.


Menemukan Konsep Relasi

Relasi dapat ditampilkan dengan:

1. Diagram panah

2. Himpunan pasangan berurutan

3. Diagram kartesius

Himpunan pasangan berurutan: {(Udin, bola kaki), (Udin, bola volley), (Joko, badminton), (Dayu, catur), (Siti, bola volley), (Abdullah, tenis meja), (Tono, tenis meja)}


Gambar .Deskripsi pasangan antara siswa dengan jenis pertandingan


Gambar .Pasangan setiap siswa yang mengikuti pertan-dingan olahraga

Definisi

Daerah asal atau biasa disebut dengan domain suatu relasi adalah himpunan tidak kosong dimana sebuah relasi didefinisikan.

Daerah kawan atau biasa disebut dengan kodomain suatu relasi adalah himpunan tidak kosong dimana anggota domain memiliki pasangan sesuai relasi yang didefinisikan.

Daerah hasil atau biasa disebut dengan range suatu relasi adalah sebuah himpunan bagian dari daerah kawan (kodomain) yang anggotanya adalah pasangan anggota domain yang memenuhi relasi yang didefinisikan.


Misalkan A dan B dua buah himpunan. Relasi pasangan berurutan dari A ke B adalah suatu aturan pengaitan yang memasangkan setiap anggota himpunan A ke setiap anggota himpunan B. Dapat ditulis A × B = {(x,y)│ ∀ x ∈ A dan y ∈ B}.


Beberapa Sifat Relasi

Sifat-1: Sifat Reflektif

Misalkan R sebuah relasi yang didefinisikan pada himpunan P. Relasi R dikatakan bersifat refleksif jika untuk setiap p ∈ P berlaku (p, p) ∈ R.


Contoh

Diberikan himpunan P = {1, 2, 3}. Didefinisikan relasi R pada himpunan P dengan hasil relasi adalah himpunan S = {(1,1), (1,2), (2,2), (2,3), (3,3), (3,2)}.

Relasi R tersebut bersifat reflektif sebab setiap anggota himpunan P berpasangan atau berelasi dengan dirinya sendiri.


Sifat-2: Sifat Simetris

Misalkan R sebuah relasi pada sebuah himpunan P. Relasi R dikatakan bersifat simetris, apabila untuk setiap (x, y) ∈ R berlaku (y, x) ∈ R.


Contoh

Diberikan himpunan P = {1, 2, 3}. Didefinisikan relasi R pada himpunan P dengan R = {(1,1) , (1,2), (1,3), (2,2), (2,1), (3,1), (3,3)}. Relasi R tersebut bersifat simetris sebab untuk setiap (x,y) ∈ R, berlaku (y,x) ∈ R.


Sifat-3: Sifat Transitif

Misalkan R sebuah relasi pada sebuah himpunan P. Relasi R bersifat transitif, apabila untuk setiap (x,y) ∈ R dan (y,z) ∈ R maka berlaku (x,z) ∈ R.


Contoh

Diberikan himpuan P = {1, 2, 3}. Didefinisikan relasi pada himpunan P dengan hasil relasi adalah himpunan R = {(1,1), (1,2), (2,2), (2,1), (3,3)}. Relasi R tersebut bersifat transitif sebab (x,y) ∈ R dan (y,z) ∈ R maka berlaku (x,z) ∈ R.


Sifat-4: Sifat Antisimetris

Misalkan R sebuah relasi pada sebuah himpunan P. Relasi R dikatakan bersifat antisimetris, apabila untuk setiap (x,y) ∈ R dan (y,x) ∈ R berlaku x = y.


Contoh

Diberikan himpunan C = {2, 4, 5}. Didefinisikan relasi R pada himpunan C dengan R = { (a,b) ∈ a kelipatan b, a,b ∈ C} sehingga diperoleh R = {(2,2), (4,4), (5,5), (4,2)}. Relasi R tersebut bersifat antisimetris.


Sifat-5: Sifat Ekuivalensi

Misalkan R sebuah relasi pada sebuah himpunan P. Relasi R disebut relasi ekivalensi jika dan hanya jika relasi R memenuhi sifat refleksif, simetris, dan transitif.


Menemukan Konsep Fungsi

Definisi

Misalkan A dan B himpunan.

Fungsi f dari A ke B adalah suatu aturan pengaitan yang memasangkan setiap anggota himpunan A dengan tepat satu anggota himpunan B.


Definisi di atas, secara simbolik ditulis menjadi f : A → B, dibaca: fungsi f memetakan setiap anggota A dengan tepat satu anggota B.

Jika f memetakan suatu elemen x ∈ A ke suatu y ∈ B dikatakan bahwa y adalah peta dari x oleh fungsi f dan peta ini dinyatakan dengan notasi f(x) dan x disebut prapeta dari y, dengan demikian dapat ditulis menjadi: f : x → y, dibaca: fungsi f memetakan x ke y, sedemikian sehingga y = f(x).



MATERI-MATERI LAINNYA : 

Bab 1 Eksponen dan Logaritma 

Bab 2 Persamaan dan Pertidaksamaan Linier

Bab 3 Sistem Persamaan dan Pertidaksamaan Linier

Bab 4 Matriks

Bab 5 Relasi dan Fungsi 

Bab 6 Barisan dan Deret 

Bab 7 Persamaan dan Fungsi Kuadrat 

Bab 8 Trigonometri

Bab 9 Geometri

Bab 10 Limit Fungsi

Bab 11 Statistika

Bab 12 Peluang


Untuk melihat barang-barang bagus dan murah silahkan cek:

Promo Produk


Komentar

Postingan Populer

Bab 11 Statistika - Matematika Kelas 10 SMA/MA/SMK

Bab 7 Bioteknologi - Ilmu Pengetahuan Alam (IPA) Kelas 9 SMP / MTS

Bab II Apresiasi Karya Seni Rupa Tiga Dimensi - Seni Budaya Kurtilas Kelas 12 (SMA / MA / SMK)