Ringkasan Buku Sekolah
Kelas 9 (SMP/MTS)
MATEMATIKA
Bab 4 Kekongruenan dan Kesebangunan
Latihan Soal dan Jawaban
Gambar . Sepasang kursi kongruen dan tidak kongruen
Dua bangun yang mempunyai bentuk dan ukuran yang sama dinamakan kongruen.
Dua bangun segi banyak (poligon) dikatakan kongruen jika memenuhi dua syarat, yaitu:
(i) sisi-sisi yang bersesuaian sama panjang, dan
(ii) sudut-sudut yang bersesuaian sama besar.
Jika bangun ABCD dan JKLM memenuhi kedua syarat tersebut, maka bangun ABCD dan JKLM kongruen, dinotasikan dengan ABCD ≅ JKLM.
Jika bangun ABCD dan JKLM tidak memenuhi kedua syarat tersebut maka bangun ABCD dan JKLM tidak kongruen, dinotasikan dengan ABCD ≅ JKLM.
Syarat Dua Segitiga Kongruen
Dua bangun yang mempunyai bentuk dan ukuran yang sama dinamakan kongruen.
Dua segitiga dikatakan kongruen jika hanya jika memenuhi syarat berikut ini:
(i) sisi-sisi yang bersesuaian sama panjang
(ii) sudut-sudut yang bersesuaian sama besar.
Gambar .Dua Segi Tiga Kongruen
Sisi-sisi yang bersesuaian: Sudut-sudut yang bersesuaian: AB dan DE → AB = DE ∠A dan ∠D → m∠A = m∠D
BC dan EF → BC = EF ∠B dan ∠E → m∠B = m∠E
CA dan FD → CA = FD ∠C dan ∠F → m∠C = m∠F
Jika ∆ABC dan ∆DEF memenuhi syarat tersebut, maka ∆ABC dan ∆DEF kongruen, dinotasikan dengan ∆ABC ≅ ∆DEF.
Jika ∆ABC dan ∆DEF tidak memenuhi syarat tersebut maka maka ∆ABC dan ∆DEF tidak kongruen, dinotasikan dengan ∆ABC ≇ ∆DEF.
Kesebangunan Bangun Datar
Dua bangun datar yang mempunyai bentuk yang sama disebut sebangun. Tidak perlu ukurannya sama, tetapi sisi-sisi yang bersesuaian sebanding (proportional) dan sudut-sudut yang bersesuaian sama besar. Perubahan bangun satu menjadi bangun lain yang sebangun melibatkan perbesaran atau pengecilan.
Dengan kata lain dua bangun dikatakan sebangun jika memenuhi syarat:
(i) perbandingan panjang sisi yang bersesuaian senilai
(ii) sudut yang bersesuaian besarnya sama
Jika bangun ABCD dan EFGH memenuhi kedua syarat tersebut, maka bangun ABCD dan EFGH sebangun, dinotasikan dengan ABCD ∼ EFGH.
Jika bangun ABCD dan EFGH tidak memenuhi kedua syarat tersebut maka bangun ABCD dan EFGH tidak sebangun, dinotasikan dengan ABCD ≁ EFGH.
Kesebangunan Dua Segitiga
Dua segitiga dikatakan sebangun jika hanya jika memenuhi syarat berikut ini.
(i) Perbandingan sisi-sisi yang bersesuaian senilai.
(ii) Besar sudut-sudut yang bersesuaian sama.
Gambar .Kesebangunan Segitiga
a. ∆ABC dan ∆A'B'C' memenuhi syarat tersebut, maka ∆ABC dan ∆A'B'C' sebangun, dinotasikan dengan ∆ABC ∼ ∆A'B'C'.
b. Jika ∆ABC dan ∆A'B'C' tidak memenuhi syarat, tersebut maka ∆ABC dan ∆A'B'C' tidak sebangun, dinotasikan dengan ∆ABC ≁ ∆A'B'C'.
MATERI-MATERI LAINNYA :
Untuk melihat barang-barang bagus dan murah silahkan cek:
Komentar
Posting Komentar