Ringkasan Buku Sekolah
Kelas 9 (SMP/MTS)
MATEMATIKA
Bab 3 Transformasi
Latihan Soal dan Jawaban
Pencerminan (Refleksi)
Gambar di bawah merupakan contoh pencerminan (refleksi) dari segi empat PQRS terhadap garis α sehingga menghasilkan bayangan yaitu segi empat P’Q’R’S’.
Gambar .Berikut ini merupakan langkah-langkah untuk menggambar bayangan hasil refleksi segi empat PQRS terhadap garis α.
Langkah 1 Gambar ruas garis yang tegak lurus terhadap garis α dari P, Q, R, dan S.
Langkah 2 Tentukan titik P’, Q’, R’, dan S’ sehingga garis α tegak lurus dan membagi PP’, QQ’, RR’, dan SS’ sama panjang. Titik P’, Q’, R’, dan S’ merupakan bayangan titik P, Q, R, dan S.
Langkah 3 Hubungkan titik-titik P’, Q’, R’, dan S’. Oleh karena P’, Q’, R’, dan S’ merupakan bayangan dari P, Q, R, dan S yang direfleksikan oleh garis α, maka segi empat P’Q’R’S’ merupakan bayangan segi empat PQRS.
Simetri Lipat
Beberapa gambar dapat dilipat sedemikian sehingga setengah bangun tersebut sama dengan bagian yang lain. Lipatan yang dimaksud merupakan garis refleksi yang disebut garis simetri atau simetri lipat.
Gambar .Simetri Lipat
Refleksi atau pencerminan merupakan satu jenis transformasi yang memindahkan setiap titik pada suatu bidang dengan mengggunakan sifat bayangan cermin dari titiktitik yang dipindahkan. Perhatikan gambar di bawah.
Gambar di atas menunjukkan contoh refleksi (pencerminan) bangun datar ABCDE pada garis m. Perhatikan bahwa ruas garis yang menghubungkan titik dan bayangannya tegak lurus terhadap garis m. Garis m disebut garis refleksi untuk ABCDE dan bayangannya A’B’C’D’E’.
Karena E terletak pada garis refleksi, titik awal dan bayangannya berada di titik yang sama. Jarak antara A terhadap garis m sama dengan jarak A’ terhadap garis m, begitu pula untuk titik sudut yang lainnya dan bayangannya yang memiliki jarak sama terhadap garis refleksi m.
Pergeseran (Translasi)
Translasi merupakan salah satu jenis transformasi yang bertujuan untuk memindahkan semua titik suatu bangun dengan jarak dan arah yang sama.
Translasi pada bidang Kartesius dapat dilukis jika kamu mengetahui arah dan seberapa jauh gambar bergerak secara mendatar dan atau vertikal. Untuk nilai yang sudah ditentukan a dan b yakni translasi memindah setiap titik P (x, y) dari sebuah bangun pada bidang datar ke P’ (x + a, y + b). Translasi dapat disimbolkan dengan (x, y) → (x + a, y + b).
Perputaran (Rotasi)
Rotasi merupakan salah satu bentuk transformasi yang memutar setiap titik pada gambar sampai sudut dan arah tertentu terhadap titik yang tetap. Titik tetap ini disebut pusat rotasi. Besarnya sudut dari bayangan benda terhadap posisi awal disebut dengan sudut rotasi.
Gambar .Rotasi
Gambar di bawah ini menunjukkan rotasi bangun ABCD terhadap pusat rotasi, R. Besar sudut ARA’, BRB’, CRC’, dan DRD’ sama. Sebarang titik P pada bangun ABCD memiliki bayangan P’ di A’B’C’D’ sedemikian sehingga besar ∠PRP’ konstan. Sudut ini disebut sudut rotasi.
Gambar .Rotasi Bangun ABCD
Suatu rotasi ditentukan oleh arah rotasi. Jika berlawanan arah dengan arah perputaran jarum jam, maka sudut putarnya positif. Jika searah perputaran jarum jam, maka sudut putarnya negatif. Pada rotasi, bangun awal selalu kongruen dengan bayangannya.
Dilatasi
Dilatasi merupakan transformasi yang mengubah ukuran sebuah gambar. Dilatasi membutuhkan titik pusat dan faktor skala.
Dilatasi terhadap titik pusat merupakan perkalian dari koordinat tiap-tiap titik pada suatu bangun datar dengan faktor skala sebesar k. Faktor skala menentukan apakah suatu dilatasi merupakan pembesaran atau pengecilan. Secara umum dilatasi dari suatu koordinat (x, y) dengan faktor skala k akan menghasilkan koordinat (kx, ky) atau dapat ditulis (x, y) → (kx, ky). Ketika k > 1 maka dilatasi tersebut termasuk ke dalam pembesaran, tetapi jika 0 < k < 1 maka dilatasi tersebut termasuk ke dalam pengecilan. Untuk memperbesar atau memperkecil bangun, letak pusat dilatasi dapat di dalam, di luar, atau pada tepi bangun yang akan didilatasikan.
Gambar .Dilatasi
Untuk melihat barang-barang bagus dan murah silahkan cek:
Komentar
Posting Komentar